Use of Generative Adversarial Network for Cross-Domain Change Detection

نویسندگان

  • Yamaguchi Kousuke
  • Tanaka Kanji
  • Sugimoto Takuma
چکیده

This paper addresses the problem of cross-domain change detection from a novel perspective of image-to-image translation. In general, change detection aims to identify interesting changes between a given query image and a reference image of the same scene taken at a different time. This problem becomes a challenging one when query and reference images involve different domains (e.g., time of the day, weather, and season) due to variations in object appearance and a limited amount of training examples. In this study, we address the above issue by leveraging a generative adversarial network (GAN). Our key concept is to use a limited amount of training data to train a GAN-based image translator that maps a reference image to a virtual image that cannot be discriminated from query domain images. This enables us to treat the cross-domain change detection task as an in-domain image comparison. This allows us to leverage the large body of literature on in-domain generic change detectors. In addition, we also consider the use of visual place recognition as a method for mining more appropriate reference images over the space of virtual images. Experiments validate efficacy of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training Adversarial Discriminators for Cross-channel Abnormal Event Detection in Crowds

Abnormal crowd behaviour detection attracts a large interest due to its importance in video surveillance scenarios. However, the ambiguity and the lack of su cient abnormal ground truth data makes end-to-end training of large deep networks hard in this domain. In this paper we propose to use Generative Adversarial Nets (GANs), which are trained to generate only the normal distribution of the da...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

AlignGAN: Learning to Align Cross-Domain Images with Conditional Generative Adversarial Networks

Recently, several methods based on generative adversarial network (GAN) have been proposed for the task of aligning cross-domain images or learning a joint distribution of cross-domain images. One of the methods is to use conditional GAN for alignment. However, previous attempts of adopting conditional GAN do not perform as well as other methods. In this work we present an approach for improvin...

متن کامل

Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

While humans easily recognize relations between data from different domains without any supervision, learning to automatically discover them is in general very challenging and needs many ground-truth pairs that illustrate the relations. To avoid costly pairing, we address the task of discovering cross-domain relations given unpaired data. We propose a method based on generative adversarial netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.08868  شماره 

صفحات  -

تاریخ انتشار 2017